COMP 3710 Applied Artificial Intelligence
Seminar/Lab 3.
A* Algorithm, and n-Puzzle Game

1. Objectives
· Understand how A* algorithm works
· Use of A* algorithm for solving 8-puzzle game

2. How to implement A* algorithm for 8-puzzle game
· An n x n board is a 1-dimensional array of n x n elements.
· The goal board is [1, 2, 3, 4, 5, 6, 7, 8, 0].
	1
	2
	3

	4
	5
	6

	7
	8
	0

0 means empty tile.
· The following functions are included in this library – http://cs.tru.ca/~mlee/comp3710/Software/board_game.min.js
· make_initial_board(n) 		Return an 1 x n x n array. n could be 3, not 8.
E.g., [1, 3, 7, 4, 2, 8, 0, 5, 6].
· index_of_empty_cell(board)		Return the index of the empty cell, i.e., 0, in board.
E.g., the return value for [1, 3, 7, 4, 2, 8, 0, 5, 6] is 6.
· Queue				MIN priority queue
E.g., var expandedQ = new Queue();
· push(id, priority, obj)		Push an object into the queue.
· pop(id) 				Return the object of id.
The object will be removed from the queue.
· get(id)				Return the object of id.
The object will NOT be removed from the queue.
· popTheHighestPriorityOne()	Return the object of the highest priority. (Note that Queue is a MIN priority queue.)
The object will be removed from the queue.
· getTheHighestPriorityOne()	Return the object of the highest priority.
The object will NOT be removed from the queue.
· isIn(id)				Return true if an object of id is in the queue, otherwise false.
· update(id, priority, obj)		Update the object of id with different priority and data.

· board_game_student.html
· You can use the f-value as the priority in the queue.
· The id of a board (e.g., 1 × 9 array) can be the string converted from the array. E.g., [1, 3, 7, 4, 2, 8, 0, 5, 6] -> “1,3,7,4,2,8,0,5,6” can be the id of the board.
· var expandedQ = new Queue();
· var node = create_node(initial_board, 0, null);
A node is an object that contains a board, its g-value, and parent node.
· expandedQ.push(get_id_of_node(node), get_fvalue_of_node(node), node); // NOT board
· For h-values, you can use the hamming distance heuristic (i.e., the number of missed tiles) or the Manhattan distance heuristic. But it is recommended to use the Manhattan distance heuristic.

3. What to do
· Utility functions used in exercise_student.html and board_game_student.html – You do not have to change anything. They will be used in other parts of the programs.
· print_message(message)
· get_id_of_board(board)
· get_id_of_node(node)
· get_board_of_node(node)
· get_gvalue_of_node(node)
· get_hvalue_of_node(node)
· get_fvalue_of_node(node)
· get_parent_node_of_node(node)
· get_next_boards(board, board0, board1, board2, board3)
· …
· exercise_student.html – You need to try the 4 exercises in the class.
· 4 exercises to implement
· is_the_goal_board(board)
· get_heuristic_value(board) – compute the heuristic value for board
· create_node(board, gvalue, parent_node)
· push_or_update_node_in_expandedQ(node)
· board_game_student.html – You need to complete the followings
· the main part of A* algorithm
· the above 4 functions
· Note. You may turn on ‘Developer tools’ to see any syntax errors in your programs.

4. Assignment
a) Submission
· Submit board_game_student.html by email. Please include your name and ‘COMP 3710’ in the title.
· Due
· 11:59 pm, January 21, 2018 – with bonus 10%
· 6:00 pm, January 23, 2018 – with the full marks
· 6:00 pm, January 24, 2018 – with penalty 10%
· 6:00 pm, January 25, 2018 – with penalty 20%
· Total marks: 10
· Any late submission will not be accepted.
· [bookmark: _GoBack]No partial marks for any code that has syntax errors.
